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The development of the theory of the second-order Eulerian 
polynomials began with the works of Buckholtz and Carlitz 
in their studies of an asymptotic expansion. Gessel-Stanley 
introduced Stirling permutations and provided combinato-
rial interpretations for the second-order Eulerian polynomials 
in terms of Stirling permutations. The Stirling permutations 
have been extensively studied by many researchers. The moti-
vation of this paper is to develop a general method for finding 
equidistributed statistics on Stirling permutations. Firstly, we 
show that the up-down-pair statistic is equidistributed with 
the ascent-plateau statistic, and that the exterior up-down-
pair statistic is equidistributed with the left ascent-plateau 
statistic. Secondly, we introduce the Stirling permutation code 
(called SP-code). A large number of equidistribution results 
follow from simple applications of the SP-codes. In particular, 
we find that six bivariable set-valued statistics are equidis-
tributed on the set of Stirling permutations, and we generalize 
a classical result on trivariate version of the second-order Eu-
lerian polynomial, which was independently established by 
Dumont and Bóna. Thirdly, we explore the bijections among 
Stirling permutation codes, perfect matchings and trapezoidal 
words. We then show the e-positivity of the enumerators of 
Stirling permutations by left ascent-plateaux, exterior up-
down-pairs and right plateau-descents. In the final part, the 
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e-positivity of the multivariate k-th order Eulerian polynomi-
als is established, which improves a classical result of Janson-
Kuba-Panholzer and generalizes a recent result of Chen-Fu. 
These e-positive expansions are derived from the combinato-
rial theory of context-free grammars.

© 2023 Elsevier Inc. All rights reserved.
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1. Introduction

1.1. Notation and preliminaries

The development of the theory of the second-order Eulerian polynomials began with 
the works of Buckholtz [3] and Carlitz [4] in their studies of an asymptotic expansion. Fur-
ther developments continued with the contributions of Riordan [30], Gessel-Stanley [15], 
Dumont [10], Park [32], Bóna [1], Janson-Kuba-Panholzer [19], Haglund-Visontai [16] and 
Chen-Fu [7,8]. The aim of this paper is to give original and substantial generalizations 
of these polynomials.

For each positive integer n and each complex number x, one can define Sn(x) by the 
equation

enx =
n∑

r=0

(nx)r

r! + (nx)n

n! Sn(x). (1)

The study of (1) was initiated by Ramanujan [29], where he made the assertion (in a 
different notation) that
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Sn(1) = n!
2

( e
n

)n

− 2
3 + 4

135n + O(n−2),

which was independently proved in 1928 by Szegö and Watson.
Buckholtz [3] found that Sn(x) =

∑k−1
r=0

1
nrUr(x) + O(n−k), where

Ur(x) = (−1)r
(

x

1 − x

d
dx

)r
x

1 − x
= (−1)r Cr(x)

(1 − x)2r+1 ,

and Cr(x) is a polynomial of degree r. Carlitz [4] discovered that

Cn(x) = (1 − x)2n+1
∞∑
k=0

{
n + k

k

}
xk,

where 
{
n
k

}
are the Stirling numbers of the second kind. The polynomials Cn(x) are now 

known as the second-order Eulerian polynomials and they satisfy the following recursion

Cn+1(x) = (2n + 1)xCn(x) + x(1 − x) d
dxCn(x), C0(x) = 1.

In particular, C1(x) = x, C2(x) = x +2x2, C3(x) = x +8x2 +6x3. In [30], Riordan found 
that Cn(x) are the enumerators of Riordan trapezoidal words of length n by number 
of distinct numbers. Subsequently, Gessel-Stanley [15] discovered that Cn(x) are the 
descent polynomials for Stirling permutations of the multiset [n]2 = {1, 1, 2, 2, . . . , n, n}. 
The Stirling permutations have been extensively studied in the past decades, see [8,12,
13,21,22,26,32,33] and references therein.

For m = (m1, m2, . . . , mn) ∈ Nn, let n = {1m1 , 2m2 , . . . , nmn} be a multiset, where 
the element i appears mi times. A multipermutation of n is a sequence of its elements. 
Denote by Sn the set of multipermutations of n. We say that the multipermutation σ of 
n is a Stirling permutation if σs � σi as soon as σi = σj and i < s < j. Denote by Qn the 
set of Stirling permutations of n. When m1 = · · · = mn = 1, the set Qn reduces to the 
symmetric group Sn, which is the set of all permutations of the set [n] = {1, 2, . . . , n}. 
When m1 = · · · = mn = 2, the set Qn reduces to Qn, which is the set of all Stirling 
permutations of the multiset [n]2. Except where explicitly stated, we always assume that 
all Stirling permutations belong to Qn, and for σ ∈ Qn, we set σ0 = σ2n+1 = 0. For 
example, Q1 = {11}, Q2 = {1122, 1221, 2211}.

Definition 1. For σ ∈ Sn, any entry σi is called

(i) an ascent (resp. descent, plateau) if σi < σi+1 (resp. σi > σi+1, σi = σi+1), where 
i ∈ {0, 1, 2, . . . , m1 + m2 + · · · + mn} and we set σ0 = σm1+m2+···+mn+1 = 0, 
see [1,15];

(ii) an ascent-plateau (resp. plateau-descent) if σi−1 < σi = σi+1 (resp. σi−1 = σi >

σi+1), where i ∈ {2, 3, . . . , m1 + m2 + · · · + mn − 1}, see [23,25];
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(iii) a left ascent-plateau if σi−1 < σi = σi+1, where i ∈ {1, 2, 3, . . . , m1 + m2 + · · · +
mn − 1} and we set σ0 = 0, see [23,25];

(iv) a right plateau-descent if σi−1 = σi > σi+1, where i ∈ {2, 3, . . . , m1+m2+ · · ·+mn}
and we set σm1+m2+···+mn+1 = 0, see [22,26].

Let asc (σ) (resp. des (σ), plat (σ), ap (σ), pd(σ), lap (σ), rpd(σ)) denotes the num-
ber of ascents (resp. descents, plateaux, ascent-plateaux, plateau-descents, left ascent-
plateaux, right plateau-descents) of σ. The reverse bijection σ → σr on Qn defined by 
σr
i = σ2n+1−i shows that
∑

σ∈Qn

xasc (σ) =
∑

σ∈Qn

xdes (σ),
∑

σ∈Qn

xap (σ) =
∑

σ∈Qn

xpd(σ),
∑

σ∈Qn

xlap (σ) =
∑

σ∈Qn

xrpd(σ).

In [1], Bóna introduced the plateau statistic plat and discovered that Cn(x) =∑
σ∈Qn

xplat (σ), which leads to a remarkable equidistributed result:

∑
σ∈Qn

xasc (σ) =
∑

σ∈Qn

xplat (σ) =
∑

σ∈Qn

xdes (σ). (2)

It should be noted that the plateau statistic has been considered by Dumont [10] in the 
name of the repetition statistic, and it went unnoticed until it was independently studied 
by Bóna. A trivariate version of the second-order Eulerian polynomial is defined by

Cn(x, y, z) =
∑

σ∈Qn

xasc (σ)ydes (σ)zplat (σ). (3)

Clearly, C1(x, y, z) = xyz. Dumont [10, p. 317] found that

Cn+1(x, y, z) = xyz

(
∂

∂x
+ ∂

∂y
+ ∂

∂z

)
Cn(x, y, z), (4)

which implies that Cn(x, y, z) is symmetric in the variables x, y and z, and so (2) holds. 
The symmetry of Cn(x, y, z) was rediscovered by Janson [18, Theorem 2.1] by construct-
ing an urn model. In [16], Haglund-Visontai introduced a refinement of the polynomial 
Cn(x, y, z) by indexing each ascent, descent and plateau by the values where they ap-
pear. Using the theory of context-free grammars, Chen-Fu [8] found that Cn(x, y, z) is 
e-positive, i.e.,

Cn(x, y, z) =
∑

i+2j+3k=2n+1

γn,i,j,k(x + y + z)i(xy + yz + zx)j(xyz)k, (5)

where the coefficient γn,i,j,k equals the number of 0-1-2-3 increasing plane trees on [n]
with k leaves, j vertices with degree one and i degree two vertices.

A rooted tree of order n with the vertices labeled 1, 2, . . . , n, is an increasing tree if 
the node labeled 1 is distinguished as the root, and the labels along any path from the 



S.-M. Ma et al. / Journal of Combinatorial Theory, Series A 199 (2023) 105777 5
1

2

2 2

1 1

1

2

2 2

1 1

1

1 1
2

2 2

Fig. 1. The ternary increasing trees of order 2 encoded by 2211, 1221, 1122, and their SP-codes are given by 
((0, 0), (1, 1)), ((0, 0)(1, 2)) and ((0, 0)(1, 3)), respectively.

root are increasing. An increasing plane tree, usually called plane recursive tree, is an 
increasing tree with the children of each vertex are linearly ordered (from left to right, 
say). A 0-1-2-· · · -k increasing plane tree on [n] is an increasing plane tree, where each 
vertex has at most k children. The degree of a vertex in a rooted tree is meant to be 
the number of its children (sometimes called outdegree). The depth-first walk of a rooted 
plane tree starts at the root, goes first to the leftmost child of the root, explores that 
branch (recursively, using the same rules), returns to the root, and continues with the 
next child of the root, until there are no more children left.

The following definition will be used repeatedly.

Definition 2 ([10]). A ternary increasing tree of size n is an increasing plane tree with 
3n + 1 nodes in which each interior node has a label and three children (a left child, a 
middle child and a right child), and exterior nodes have no children and no labels.

Let Tn denote the set of ternary increasing trees of size n, see Fig. 1 for instance. 
For any T ∈ Tn, it is clear that T has exactly 2n + 1 exterior nodes. Let exl(T )
(resp. exm(T ), exr(T )) denotes the number of exterior left nodes (resp. exterior middle 
nodes, exterior right nodes) in T . Using a recurrence relation that is equivalent to (4), 
Dumont [10, Proposition 1] found that

Cn(x, y, z) =
∑

σ∈Qn

xasc (σ)yplat (σ)zdes (σ) =
∑
T∈Tn

xexl(T )yexm(T )zexr(T ). (6)

1.2. Motivation and the organization of the paper

A bijection between plane recursive trees and Stirling permutations was independently 
found by Koganov [20] and Janson [18]. Subsequently, Janson-Kuba-Panholzer [19, Sec-
tion 3] showed that this bijection naturally extends to a bijection between (k + 1)-ary 
increasing trees and k-Stirling permutations, which was independently introduced by 
Gessel [32, p46]. By taking k = 2 in the proof of [19, Theorem 1], the bijection φ be-
tween ternary increasing trees and Stirling permutations can be described as follows (we 
give a detail description of it for convenience):
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1

2

2 2

1 1
3

4

4 4

3 3

Fig. 2. An order 4 ternary increasing tree encoded by 22114433, and its SP-code is ((0, 0), (1, 1), (1, 3), (3, 1)).

(i) Given T ∈ Tn. Between the 3 edges of T going out from a node labeled v, we place 
2 integers v. Now we perform the depth-first walk and code T by the sequence 
of the labels visited as we go around T . Let φ(T ) be the code. In particular, the 
ternary increasing tree of order 1 is encoded by the Stirling permutation 11. A 
ternary increasing tree of order n is encoded by a string of 2n integers, where each 
of the labels 1, 2, . . . , n appears exactly 2 times. Clearly, the code φ(T ) is a Stirling 
permutation, see Fig. 2 for illustration;

(ii) The inverse of φ can be described as follows. Given σ ∈ Qn. We proceed recursively 
starting at step one by decomposing σ as u11u21u3, where the ui’s are again Stirling 
permutations. The smallest label in each ui is attached to the root node labeled 1. 
One can recursively apply this procedure to each ui to obtain the tree representation, 
and φ−1(σ) is a ternary increasing tree.

Based on the work of Bóna [1], Chen-Fu [8], Dumont [10], Haglund-Visontai [16], 
Gessel-Stanely [15] and Janson-Kuba-Panholzer [19], this paper is devoted to the follow-
ing problem.

Problem 3. Develop a general method for finding equidistributed statistics on Qn.

In Section 2, we introduce the up-down-pair statistic ud and the exterior up-down-pair 
statistic eud on Stirling permutations, and we show that ud is equidistributed with ap
and eud is equidistributed with lap . Therefore, we get

∑
σ∈Qn

xap (σ) =
∑

σ∈Qn

xud(σ) =
∑

σ∈Qn

xpd(σ),

∑
σ∈Qn

xlap (σ) =
∑

σ∈Qn

xeud(σ) =
∑

σ∈Qn

xrpd(σ). (7)

In Section 3, we first introduce an encoding of Stirling permutation (called SP-code), 
and we then present various results concerning Problem 3. In particular, in Theorems 13
and 14, we present bivariate generalizations of (2). The last two identities given in Theo-
rem 14 generalize (2) and (7) simultaneously. In Section 4, we establish bijections among 
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SP-codes, trapezoidal words and perfect matchings. In Section 5, we show the e-positivity 
of the enumerators of Stirling permutations by (lap , eud, rpd). In Section 6, we introduce 
the multivariate k-th order Eulerian polynomial, and we find that it is e-positive, which 
generalizes (5) and improves a classical result of Janson-Kuba-Panholzer [19].

2. The ascent-plateau and up-down-pair statistics

The number of elements in a set C is called the cardinality of C, written as #C. The 
type A Eulerian polynomials An(x) [17], the type B Eulerian polynomials Bn(x) [2], the 
ascent-plateau polynomials (also called 1/2-Eulerian polynomials) Mn(x) [23,31] and the 
left ascent-plateau polynomials Nn(x) [23] can be respectively defined as follows:

An(x) =
∑

π∈Sn

xdes (π), Bn(x) =
∑
π∈Bn

xdesB(π),

Mn(x) =
∑

σ∈Qn

xap (σ), Nn(x) =
∑

σ∈Qn

xlap (σ),

where Bn denotes the hyperoctahedral group of rank n,

desB(π) = #{i ∈ {0, 1, 2, . . . , n− 1} | π(i) > π(i + 1)}, where we set π(0) = 0.

These polynomials share several similar properties, including recursions [15,23,28], real-
rootedness [1,16,28], combinatorial expansions [8,21,26,34] and asymptotic distribu-
tions [17]. Here we collect the recursions of these polynomials:

An+1(x) = (n + 1)xAn(x) + x(1 − x) d
dxAn(x),

Bn+1(x) = (2nx + 1 + x)Bn(x) + 2x(1 − x) d
dxBn(x),

Mn+1(x) = (2nx + 1)Mn(x) + 2x(1 − x) d
dxMn(x),

Nn+1(x) = (2n + 1)xNn(x) + 2x(1 − x) d
dxNn(x),

with A0(x) = B0(x) = M0(x) = N0(x) = 1. There are close connections among these 
polynomials (see [24] for details). According to [24, Proposition 1], we have

2nAn(x) =
n∑

i=0

(
n

i

)
Ni(x)Nn−i(x), Bn(x) =

n∑
i=0

(
n

i

)
Mi(x)Nn−i(x). (8)

Let Q(1)
n be the set of Stirling permutations of the multiset {1, 22, 32, . . . , n2, (n +1)2}, 

i.e., this multiset has exactly one 1 and two copies of i for each 2 � i � n +1. In particular,

Q(1)
2 = {12233, 12332, 13322, 33122, 22133, 22331, 23321, 33221}.
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By considering the position of the entry 1 in a Stirling permutation σ ∈ Q(1)
n , the 

following result immediately follows from (8).

Proposition 4. For n � 1, we have

2nAn(x) =
∑

σ∈Q(1)
n

xlap (σ), Bn(x) =
∑

σ∈Q(1)
n

xap (σ).

Definition 5. Let σ ∈ Qn. An entry σi is called an up-down-pair entry if σi−1 < σi =
σj > σj+1, where i < j. The two equal entries σi and σj may appear arbitrarily far 
apart. The up-down-pair statistic ud and the exterior up-down-pair statistic eud are 
respectively defined as follows:

ud(σ) = #{i ∈ [2n− 2] : σi is an up-down-pair entry, where we set σ0 = 0},
eud(σ) = #{i ∈ [2n− 1] : σi is an up-down-pair entry, where we set σ0 = σ2n+1 = 0}.

Example 6. We have

ud(123321) = ud(0123321) = 2,ud(331221) = ud(0331221) = 2,

eud(123321) = eud(01233210) = 3, eud(331221) = eud(03312210) = 2.

The main result of this section is given as follows.

Theorem 7. For n � 1, we have

∑
σ∈Qn

xap (σ) =
∑

σ∈Qn

xud(σ),
∑

σ∈Qn

xlap (σ) =
∑

σ∈Qn

xeud(σ). (9)

Proof. Let

Mn(x) =
∑

σ∈Qn

xap (σ) =
n−1∑
i=0

Mn,ix
i, Nn(x) =

∑
σ∈Qn

xlap (σ) =
n∑

i=1
Nn,ix

i.

Then the coefficients Mn,i and Nn,i respectively satisfy the recurrence relations

Mn+1,i = (2i + 1)Mn,i + (2n− 2i + 2)Mn,i−1,

Nn+1,i = 2iNn,i + (2n− 2i + 3)Nn,i−1,
(10)

with the initial conditions M0,0 = N0,0 = 1 and M0,i = N0,i = 0 if i > 0, see [23].
Let mn,i = #{σ ∈ Qn : ud(σ) = i}. It is clear that m1,0 = M1,0 = 1, since ud(11) =

ud(011) = 0. There are two ways to obtain an element σ′ ∈ Qn+1 with ud(σ′) = i from 
an element σ ∈ Qn by inserting two copies of n into consecutive positions:
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(c1) If ud(σ) = i, then we can insert the two copies of n before an up-down-pair entry 
or right after the second appearance of it. Moreover, we can insert the two copies 
of n at the end of σ. This accounts for (2i + 1)mn,i possibilities;

(c2) If ud(σ) = i − 1, then we insert the two copies of n into one of the remaining 
2n +1 − (2(i −1) +1) = 2n −2i +2 positions. This accounts for (2n −2i +2)mn,i−1
possibilities.

Thus mn,i satisfy the same recursion and initial conditions as Mn,i, so they agree.
Define un,i = #{σ ∈ Qn : eud(σ) = i}. Clearly, u1,1 = N1,1 = 1, since eud(0110) = 1. 

Similarly, there are two ways to obtain an element σ′ ∈ Qn+1 with eud(σ′) = i from an 
element σ ∈ Qn by inserting two copies of n into consecutive positions:

(c1) If eud(σ) = i, then we can insert the two copies of n before an up-down-pair entry 
or right after the second appearance of it. This accounts for 2iun,i possibilities;

(c2) If eud(σ) = i − 1, then we insert the two consecutive copies of n into one of the 
remaining 2n +1 −2(i −1) = 2n −2i +3 positions. This accounts for (2n −2i +3)un,i−1
possibilities.

Thus un,i satisfy the same recursion and initial conditions as Nn,i, so they agree. �
3. Problem 3 and the Stirling permutation code

Recall that a sequence (e1, e2, . . . , en) is an inversion sequence if 0 � ei < i for 
all i ∈ [n]. It is well known that inversion sequences of length n are in bijection with 
permutations in Sn. As a dual of inversion sequence, by using the bijection φ (see 
subsection 1.2 for details), we shall introduce a common code for ternary increasing 
trees and Stirling permutations.

Recall that for any ternary increasing tree T ∈ Tn, each interior node has a label and 
three children (a child at the left, a middle child and a right child), and the exterior nodes 
have no children and no labels. For convenience, we introduce the following definition.

Definition 8. A simplified ternary increasing tree is a ternary increasing tree with no 
exterior nodes. The degree of a vertex in a ternary increasing tree is meant to be the 
number of its children in the simplified ternary increasing tree.

In fact, a simplified ternary increasing tree is the same as the ordinary ternary in-
creasing tree, it is only a simplified version. A node in a simplified ternary increasing 
tree with no children is called a leaf, and any interior node has at most three children (a 
left child, a middle child or a right child). For example, Fig. 3 gives the set of simplified 
ternary increasing trees of order 2. In the sequel, a ternary increasing tree is always 
meant to be a simplified ternary increasing tree. A ternary increasing tree of size n can 
be built up from the root 1 by successively adding nodes 2, 3, . . . , n. Clearly, node 2 is a 
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2 , 

1

2 , 

1

2

Fig. 3. The simplified ternary increasing trees of order 2.

child of the root 1 and the root 1 has at most three children, see Fig. 3 for instance. For 
2 � i � n, when node i is inserted, we distinguish three cases:

(c1) if it is the left child of a node v ∈ [i − 1], then the node i is coded as [v, 1];
(c2) if it is the middle child of a node v ∈ [i − 1], then the node i is coded as [v, 2];
(c3) if it is the right child of a node v ∈ [i − 1], then the node i is coded as [v, 3].

Thus the node i is coded as a 2-tuple (ai−1, bi−1), where 1 � ai−1 � i − 1, 1 � bi−1 � 3
and (ai, bi) �= (aj , bj) for all 1 � i < j � n − 1. By convention, the root 1 is coded as 
(0, 0). Therefore, a ternary increasing tree of size n corresponds naturally to a build-tree 
code ((0, 0), (a1, b1), . . . , (an−1, bn−1)). Using the bijection φ between ternary increasing 
trees and Stirling permutations, one can see that the build-tree code is the same as the 
Stirling permutation code, which is defined as follows.

Definition 9. A 2-tuples sequence Cn = ((0, 0), (a1, b1), (a2, b2) . . . , (an−1, bn−1)) of length 
n is called a Stirling permutation code (SP-code for short) if 1 � ai � i, 1 � bi � 3 and 
(ai, bi) �= (aj , bj) for all 1 � i < j � n − 1.

Let CQn be the set of SP-codes of length n. In particular, CQ1 = {(0, 0)} and CQ2 =
{(0, 0)(1, 1), (0, 0)(1, 2), (0, 0)(1, 3)}, see Fig. 1.

Theorem 10. The set CQn is in a natural bijection with the set Qn, i.e., CQn
∼= Qn.

Proof. For any n � 2, there are three cases to obtain an element of Qn from an element 
σ ∈ Qn−1 by putting the two copies of n between σi and σi+1: σi < σi+1, σi = σi+1, σi >

σi+1. Set Γ(11) = (0, 0). When n � 2, the bijection Γ : Qn → CQn can be defined as 
follows:

(c1) σi < σi+1 if and only if (an−1, bn−1) = (σi+1, 1);
(c2) σi = σi+1 if and only if (an−1, bn−1) = (σi+1, 2);
(c3) σi > σi+1 if and only if (an−1, bn−1) = (σi, 3). �
Example 11. Given σ = 551443312662 ∈ Q6. We give the procedure of creating its 
SP-code:

11 ⇔ (0, 0),
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1122 ⇔ (0, 0)(1, 3),

133122 ⇔ (0, 0)(1, 3)(1, 2),

14433122 ⇔ (0, 0)(1, 3)(1, 2)(3, 1),

5514433122 ⇔ (0, 0)(1, 3)(1, 2)(3, 1)(1, 1),

551443312662 ⇔ (0, 0)(1, 3)(1, 2)(3, 1)(1, 1)(2, 2).

Thus Γ(σ) = (0, 0)(1, 3)(1, 2)(3, 1)(1, 1)(2, 2). Conversely, we get Γ−1(Γ(σ)) = σ.

For σ ∈ Qn, let

Asc(σ) = {σi | σi−1 < σi},

Plat(σ) = {σi | σi = σi+1},

Des(σ) = {σi | σi > σi+1},

Lap(σ) = {σi | σi−1 < σi = σi+1},

Rpd(σ) = {σi | σi−1 = σi > σi+1},

Eud(σ) = {σi | σi−1 < σi = σj > σj+1, i < j},

Dasc(σ) = {σi | σi−1 < σi < σi+1},

Dplat(σ) = {σi | σi−1 > σi = σi+1},

Ddes(σ) = {σi | σi−1 > σi > σi+1},

Pasc(σ) = {σi | σi−1 = σi < σi+1},

Apd(σ) = {σi | σi−1 < σi = σi+1 > σi+1},

Uu(σ) = {σi | σi−1 < σi = σj < σj+1, i < j},

Dd(σ) = {σi | σi−1 > σi = σj > σj+1, i < j}

denote the sets of ascents, plateaux, descents, left ascent-plateaux, right plateau-
descents, exterior up-down-pairs, double ascents, descent-plateaux, double descents, 
plateau-ascents, ascent-plateau-descents, up-up-pairs and down-down-pairs of σ, re-
spectively. We use dasc (σ), dplat(σ), ddes (σ), pasc(σ), apd(σ), uu(σ) and dd(σ) to 
respectively denote the number of double ascents, descent-plateaux, double descents, 
plateau-ascents, ascent-plateau-descents, up-up-pairs and down-down-pairs of σ, i.e., 
dasc (σ) = #Dasc(σ), dplat(σ) = #Dplat(σ), ddes (σ) = #Ddes (σ), pasc(σ) =
#Pasc(σ), apd(σ) = # Apd(σ), uu(σ) = # Uu(σ) and dd(σ) = # Dd(σ).

Example 12. Let σ = 77441223315665 ∈ Q7. The corresponding SP-code is given by

C7 = (0, 0)(1, 2)(2, 3)(1, 1)(1, 3)(5, 2)(4, 1).



12 S.-M. Ma et al. / Journal of Combinatorial Theory, Series A 199 (2023) 105777
Table 1
The correspondences of statistics on Stirling permutations and SP-codes.

Statistics on Stirling permutation Statistics on SP-code
Asc (ascent) [n] − {ai | (ai, 1) ∈ Cn}
Plat (plateau) [n] − {ai | (ai, 2) ∈ Cn}
Des (descent) [n] − {ai | (ai, 3) ∈ Cn}
Lap (left ascent-plateau) [n] − {ai | (ai, 1) or (ai, 2) ∈ Cn}
Rpd (right plateau-descent) [n] − {ai | (ai, 2) or (ai, 3) ∈ Cn}
Eud (exterior up-down-pair) [n] − {ai | (ai, 1) or (ai, 3) ∈ Cn}
Dasc (double ascent) {ai | (ai, 1) /∈ Cn & (ai, 2) ∈ Cn}
Dplat (descent-plateau) {ai | (ai, 1) ∈ Cn & (ai, 2) /∈ Cn}
Ddes (double descent) {ai | (ai, 2) ∈ Cn & (ai, 3) /∈ Cn}
Pasc (plateau-ascent) {ai | (ai, 2) /∈ Cn & (ai, 3) ∈ Cn}
Apd (ascent-plateau-descent) {ai | (ai, 1) /∈ Cn & (ai, 2) /∈ Cn & (ai, 3) /∈ Cn}
Uu (up-up-pair) {ai | (ai, 1) /∈ Cn & (ai, 3) ∈ Cn}
Dd (down-down-pair) {ai | (ai, 1) ∈ Cn & (ai, 3) /∈ Cn}

Then we have

Asc(σ) = [7] − {ai | (ai, 1) ∈ C7} = {2, 3, 5, 6, 7},
Plat(σ) = [7] − {ai | (ai, 2) ∈ C7} = {2, 3, 4, 6, 7},
Des(σ) = [7] − {ai | (ai, 3) ∈ C7} = {3, 4, 5, 6, 7},
Lap(σ) = [7] − {ai | (ai, 1) or (ai, 2) ∈ C7} = {2, 3, 6, 7},
Rpd(σ) = [7] − {ai | (ai, 2) or (ai, 3) ∈ C7} = {3, 4, 6, 7},
Eud(σ) = [7] − {ai | (ai, 1) or (ai, 3) ∈ C7} = {3, 5, 6, 7},
Dasc(σ) = {ai | (ai, 1) /∈ C7 & (ai, 2) ∈ C7} = {5},

Dplat(σ) = {ai | (ai, 1) ∈ C7 & (ai, 2) /∈ C7} = {4},
Ddes(σ) = {ai | (ai, 2) ∈ C7 & (ai, 3) /∈ C7} = {5},
Pasc(σ) = {ai | (ai, 2) /∈ C7 & (ai, 3) ∈ C7} = {2},
Apd(σ) = {ai | (ai, 1) /∈ C7 & (ai, 2) /∈ C7 & (ai, 3) /∈ C7} = {3, 6},
Uu(σ) = {ai | (ai, 1) /∈ C7 & (ai, 3) ∈ C7} = {2},
Dd(σ) = {ai | (ai, 1) ∈ C7 & (ai, 3) /∈ C7} = {4}.

Combining the bijections φ (see subsection 1.2) and Γ (defined in the proof of Theo-
rem 10), it is clear that the set-valued statistics on Stirling permutations listed in Table 1
correspond to the given set-valued statistics on SP-codes. We illustrate these correspon-
dences in Example 12. By Table 1, a large number of equidistribution results can be 
deduced. The following two results generalize (2), which can be proved by switching 
some 2-tuples in the corresponding SP-codes.

Theorem 13. The six bivariable set-valued statistics are all equidistributed on Qn:

(Asc,Dasc) , (Plat,Dplat) , (Des,Ddes) ,
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(Asc,Uu) , (Plat,Pasc) , (Des,Dd) .

So we get the following four identities:∑
σ∈Qn

xasc (σ)ydasc (σ) =
∑

σ∈Qn

xplat (σ)ydplat(σ) =
∑

σ∈Qn

xdes (σ)yddes (σ),

∑
σ∈Qn

xasc (σ)ydasc (σ) =
∑

σ∈Qn

xplat (σ)ypasc(σ) =
∑

σ∈Qn

xdes (σ)yddes (σ),

∑
σ∈Qn

xasc (σ)yuu(σ) =
∑

σ∈Qn

xplat (σ)ypasc(σ) =
∑

σ∈Qn

xdes (σ)ydd(σ),

∑
σ∈Qn

xasc (σ)yuu(σ) =
∑

σ∈Qn

xplat (σ)ydplat(σ) =
∑

σ∈Qn

xdes (σ)ydd(σ).

Proof. Consider Table 1. For Cn ∈ CQn, if we switch the 2-tuples (ai, 1) and (ai, 2) for 
all i (if any), then we see that the following bivariable set-valued statistics are equidis-
tributed on CQn:

([n] − {ai | (ai, 1) ∈ Cn}, {ai | (ai, 1) /∈ Cn & (ai, 2) ∈ Cn}) ,
([n] − {ai | (ai, 2) ∈ Cn}, {ai | (ai, 1) ∈ Cn & (ai, 2) /∈ Cn}) .

By Table 1, we obtain that (Asc,Dasc) and (Plat,Dplat) are equidistributed on Qn.
If we switch the 2-tuples (ai, 1) and (ai, 3) for all i (if any), then we find that the 

following bivariable set-valued statistics are equidistributed on CQn:

([n] − {ai | (ai, 1) ∈ Cn}, {ai | (ai, 1) /∈ Cn & (ai, 2) ∈ Cn}) ,
([n] − {ai | (ai, 3) ∈ Cn}, {ai | (ai, 2) ∈ Cn & (ai, 3) /∈ Cn}) .

By Table 1, we get that (Asc,Dasc) and (Des,Ddes) are equidistributed on Qn.
If we switch the 2-tuples (ai, 1) and (ai, 2) for all i (if any), then we see that the 

following bivariable set-valued statistics are equidistributed on CQn:

([n] − {ai | (ai, 1) ∈ Cn}, {ai | (ai, 1) /∈ Cn & (ai, 3) ∈ Cn}) ,
([n] − {ai | (ai, 2) ∈ Cn}, {ai | (ai, 2) /∈ Cn & (ai, 3) ∈ Cn}) .

By Table 1, we obtain that (Asc,Uu) and (Plat,Pasc) are equidistributed on Qn.
If we switch the 2-tuples (ai, 1) and (ai, 3) for all i (if any), then we get that the 

following bivariable set-valued statistics are equidistributed on CQn:

([n] − {ai | (ai, 1) ∈ Cn}, {ai | (ai, 1) /∈ Cn & (ai, 3) ∈ Cn}) ,
([n] − {ai | (ai, 3) ∈ Cn}, {ai | (ai, 1) ∈ Cn & (ai, 3) /∈ Cn}) .

By Table 1, we obtain that (Asc,Uu) and (Des,Dd) are equidistributed on Qn.
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If we switch the 2-tuples (ai, 2) and (ai, 3) for all i (if any), then we find that the 
following bivariable set-valued statistics are equidistributed on CQn:

([n] − {ai | (ai, 2) ∈ Cn}, {ai | (ai, 1) ∈ Cn & (ai, 2) /∈ Cn}) ,

([n] − {ai | (ai, 3) ∈ Cn}, {ai | (ai, 1) ∈ Cn & (ai, 3) /∈ Cn}) .

It follows from Table 1 that (Plat,Dplat) and (Des,Dd) are equidistributed on Qn.
In conclusion, the proof is completed by using transitivity. �

Theorem 14. The six bivariable set-valued statistics are equidistributed on Qn:

(Asc,Lap) , (Plat,Lap) , (Des,Rpd) ,

(Asc,Eud) , (Plat,Rpd) , (Des,Eud) .

So we get the following six identities:

∑
σ∈Qn

xasc (σ)ylap(σ) =
∑

σ∈Qn

xplat (σ)ylap(σ) =
∑

σ∈Qn

xdes (σ)yrpd(σ),

∑
σ∈Qn

xasc (σ)ylap(σ) =
∑

σ∈Qn

xplat (σ)yrpd(σ) =
∑

σ∈Qn

xdes (σ)yrpd(σ),

∑
σ∈Qn

xasc (σ)yeud(σ) =
∑

σ∈Qn

xplat (σ)yrpd(σ) =
∑

σ∈Qn

xdes (σ)yeud(σ),

∑
σ∈Qn

xasc (σ)yeud(σ) =
∑

σ∈Qn

xplat (σ)ylap(σ) =
∑

σ∈Qn

xdes (σ)yeud(σ),

∑
σ∈Qn

xasc (σ)ylap(σ) =
∑

σ∈Qn

xplat (σ)yrpd(σ) =
∑

σ∈Qn

xdes (σ)yeud(σ),

∑
σ∈Qn

xasc (σ)yeud(σ) =
∑

σ∈Qn

xplat (σ)ylap(σ) =
∑

σ∈Qn

xdes (σ)yrpd(σ),

where the last two identities generalize (2) and (7) simultaneously.

Proof. We only prove that (Asc,Lap) and (Plat,Lap) are equidistributed on Qn. The 
other pairs can be proved in the same way. For Cn ∈ CQn, if we switch the 2-tuples 
(ai, 1) and (ai, 2) for all i (if any), then the following bivariable set-valued statistics are 
equidistributed on CQn:

([n] − {ai | (ai, 1) ∈ Cn}, [n] − {ai | (ai, 1) or (ai, 2) ∈ Cn}),

([n] − {ai | (ai, 2) ∈ Cn}, [n] − {ai | (ai, 1) or (ai, 2) ∈ Cn}).

By Table 1, we get that (Asc,Lap) and (Plat,Lap) are equidistributed on Qn. �
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We say that a joint distribution of (set-valued) statistics or a multivariate polynomial 
is symmetric if it is invariant under any permutation of its indeterminates. By Table 1, 
we can now present the following two results, and we omit the proofs for simplicity.

Theorem 15. The six set-valued statistics are all equidistributed on Qn:

Dasc,Dplat,Ddes,Pasc,Uu,Dd .

Moreover, if we select any two set-valued statistics from these six set-valued statistics, 
then the selected two set-valued statistics are symmetric on Qn.

Theorem 16. The following triple set-valued statistics are all symmetric on Qn:

(Asc(σ),Plat(σ),Des(σ)), (Lap(σ),Rpd(σ),Eud(σ)),

(Dasc(σ),Pasc(σ),Dd(σ)), (Ddes(σ),Dplat(σ),Uu(σ)).

Here we give an example to illustrate the symmetry of the joint distribution of the 
set-valued statistics Ddes and Pasc.

Example 17. Let σ and C7 be the given in Example 12. Then Ddes(σ) = {5} and 
Pasc(σ) = {2}. Let Φ be the bijection on CQ7 that is defined by

(ai, 2) ↔ (ai, 3), where 1 � i � 6.

In other words, we just switch the 2-tuples (ai, 2) and (ai, 3) for all i (if any). Thus

Φ ((0, 0)(1, 2)(2, 3)(1, 1)(1, 3)(5, 2)(4, 1)) = (0, 0)(1, 3)(2, 2)(1, 1)(1, 2)(5, 3)(4, 1).

It is easy to verify that φ−1 (Φ(C7)) = 77441556612332. Therefore, we have

Ddes
(
φ−1 (Φ(C7))

)
= {2}, Pasc

(
φ−1 (Φ(C7))

)
= {5}.

Corollary 18. The following two polynomials are both symmetric in their variables:

Cn(x, y, z) =
∑

σ∈Qn

xasc (σ)yplat (σ)zdes (σ),

Nn(x, y, z) =
∑

σ∈Qn

xlapσ)yrpd(σ)zeud(σ).

As discussed in the introduction, the symmetry of Cn(x, y, z) has been extensively 
studied, see [8,16] for instance. In Section 5, we shall show the e-positivity of Nn(x, y, z).
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4. Bijections among SP-codes, trapezoidal words and perfect matchings

Following Riordan [30], we say that a word t = t1t2 · · · tn is a Riordan trapezoidal word
if the element ti takes the values 1, 2, . . . , 2i − 1 for all 1 � i � n. Let RTn be the set 
of Riordan trapezoidal words of length n. In particular, Besides (6), Dumont [10] gave 
interpretations of Cn(x, y, z) in terms of Dumont trapezoidal words as well as perfect 
matchings. The Dumont trapezoidal word [10] is a variant of the Riordan trapezoidal 
word. A word w = w1w2 · · ·wn is called a Dumont trapezoidal word of length n if 0 �
|wi| < i for all 1 � i � n, where wi are all integers. Let DTn denote the set of Dumont 
trapezoidal words of length n. As usual, we write i = −i. For example,

RT1 = {1}, RT2 = {11, 12, 13}, DT1 = {0}, DT2 = {00, 01, 01}.

Given w ∈ DTn. Let dist(w) be the number of distinct elements in w, and we define

nneg(σ) = n− {wi | wi < 0}, npos(σ) = n− {wi | wi > 0}.

Dumont [10, Section 2.3] found that

Cn(x, y, z) =
∑

w∈∈DTn

xdist(w)ynneg(σ)znpos(σ).

A perfect matching of [2n] is a set partition of [2n] with blocks (disjoint nonempty 
subsets) of size exactly 2. Let M2n be the set of perfect matchings of [2n], and let 
M ∈ M2n. The standard form of M is a list of blocks {(i1, j1), (i2, j2), . . . , (in, jn)} such 
that ir < jr for all 1 � r � n and 1 = i1 < i2 < · · · < in. In this paper, we always 
write M in standard form. It is well known that M can be regarded as a fixed-point-free 
involution on [2n]. In particular,

M2 = {(1, 2)}, M4 = {(1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)}.

As a continuation of Theorem 10, it is natural to explore the bijections among SP-
codes, trapezoidal words and perfect matchings.

Theorem 19. For n � 1, we have

CQn
∼= DTn

∼= RTn
∼= M2n. (11)

Proof. (i) Let ϕ1 : DTn → RTn be the bijection defined by

ϕ1(wi) =

⎧⎪⎨
⎪⎩

1, if wi = 0;
2k, if wi = k > 0;
2k + 1, if w = k < 0,

(12)

i



S.-M. Ma et al. / Journal of Combinatorial Theory, Series A 199 (2023) 105777 17
which yields that DTn
∼= RTn.

(ii) We now start to construct a bijection, denoted by ϕ2, from RTn to M2n. Recall 
that RT1 = {1}. Set ϕ2(1) = (1, 2). When n = 2, RT2 = {11, 12, 13}, and we set

ϕ2(11) = (1, 4)(2, 3), ϕ2(12) = (2, 4)(1, 3), ϕ2(13) = (3, 4)(1, 2).

We proceed by induction. Let n = m. Suppose that ϕ2 is a bijection from RTm to 
M2m. Given M = (i1, j1)(i2, j2) · · · (im, jm) ∈ M2m. Suppose that ϕ2(t) = M, where 
t = t1t2 · · · tm ∈ RTm. For 1 � i � 2m + 1, the map ϕ2 is defined as follows:

• ϕ2(t1t2 · · · tmi) = (i, 2m +2)(i′1, j′1)(i′2, j′2) · · · (i′m, j′m), where (i′1, j′1)(i′2, j′2) · · · (i′m, j′m)
is a perfect matching of [2m + 2] − {i, 2m + 2} such that the elements in 
(i′1, j′1) · · · (i′m, j′m) keep the same order relationships they had in (i1, j1) · · · (im, jm).

Clearly, ϕ2 is the desired bijection.
(iii) Now we start to construct a bijection, denoted by ϕ3, from DTn to CQn. When 

n = 1, we set ϕ3(0) = (0, 0). When n � m, suppose ϕ3 is a bijection from DTn to 
CQn. Consider the case n = m + 1. Let w = w1w2 · · ·wm+1 ∈ DTm+1. Then w′ =
w1w2 · · ·wm ∈ DTm and ϕ3(w′) = ((0, 0), (a1, b1), (a2, b2) . . . , (am−1, bm−1)) ∈ CQm. 
We distinguish three cases:

(c1) wm+1 = k and k ∈ {w1, w2, . . . , wm} if and only if

(am, bm) = (j, 1), where j = max{i | wi = k, 1 � i � m};

(c2) wm+1 = −j and −j /∈ {w1, w2, . . . , wm} if and only if (am, bm) = (j, 2), where 
1 � j � m;

(c3) wm+1 = j and j /∈ {w1, w2, . . . , wm} if and only if (am, bm) = (j, 3), where 1 � j �
m.

It is routine to check that ϕ3 is the desired bijection. When n = 2, 3, we have

ϕ3(00) = (0, 0)(1, 1), ϕ3(01) = (0, 0)(1, 2), ϕ3(01) = (0, 0)(1, 3);

ϕ3(000) = (0, 0)(1, 1)(2, 1), ϕ3(001) = (0, 0)(1, 1)(1, 2), ϕ3(001) = (0, 0)(1, 1)(1, 3),

ϕ3(002) = (0, 0)(1, 1)(2, 2), ϕ3(002) = (0, 0)(1, 1)(2, 3), ϕ3(010) = (0, 0)(1, 2)(1, 1),

ϕ3(011) = (0, 0)(1, 2)(1, 3), ϕ3(01 1) = (0, 0)(1, 2)(2, 1), ϕ3(01 2) = (0, 0)(1, 2)(2, 2),

ϕ3(012) = (0, 0)(1, 2)(2, 3), ϕ3(010) = (0, 0)(1, 3)(1, 1), ϕ3(011) = (0, 0)(1, 3)(1, 2),

ϕ3(011) = (0, 0)(1, 3)(2, 1), ϕ3(012) = (0, 0)(1, 3)(2, 2), ϕ3(012) = (0, 0)(1, 3)(2, 3).

This completes the proof. �
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As an illustration of ϕ3, we give an example.

Example 20. Given w = 0 - 0 - 0 - 1 - 1 - 5 - 1 ∈ DT7. We give the procedure of creating 
ϕ3(w).

0 ⇔ (0, 0),

0 - 0 ⇔ (0, 0)(1, 1),

0 - 0 - 0 ⇔ (0, 0)(1, 1)(2, 1),

0 - 0 - 0 - 1 ⇔ (0, 0)(1, 1)(2, 1)(1, 2),

0 - 0 - 0 - 1 - 1 ⇔ (0, 0)(1, 1)(2, 1)(1, 2)(1, 3),

0 - 0 - 0 - 1 - 1 - 5 ⇔ (0, 0)(1, 1)(2, 1)(1, 2)(1, 3)(5, 3),

0 - 0 - 0 - 1 - 1 - 5 - 1 ⇔ (0, 0)(1, 1)(2, 1)(1, 2)(1, 3)(5, 3)(5, 1).

Thus ϕ3(w) = (0, 0)(1, 1)(2, 1)(1, 2)(1, 3)(5, 3)(5, 1) ∈ CQ7. Conversely, ϕ−1
3 (ϕ3(w)) = w.

5. The e-positivity of Nn(x, y, z)

5.1. Preliminary

Let Xn = {x1, x2, . . . , xn} be a set of commuting variables. Define

Sn(x) =
n∏

i=1
(x− xi) =

n∑
k=0

(−1)kekxn−k.

Then the k-th elementary symmetric function associated with Xn is defined by

ek =
∑

1�i1<i2<···<ik�n

xi1xi2 · · ·xik .

In particular, e0 = 1, e1 =
∑n

i=1 xi, en = x1x2 · · ·xn. A function f(x1, x2, . . .) ∈
R[x1, x2, . . .] is said to be symmetric if it is invariant under any permutation of its 
indeterminates. We say that a symmetric function is e-positive if it can be written as a 
nonnegative linear combination of elementary symmetric functions.

For an alphabet A, let Q[[A]] be the rational commutative ring of formal power series 
in monomials formed from letters in A. Following Chen [6], a context-free grammar over 
A is a function G : A → Q[[A]] that replaces each letter in A by a formal function over 
A. The formal derivative DG with respect to G satisfies the derivation rules:

DG(u + v) = DG(u) + DG(v), DG(uv) = DG(u)v + uDG(v).

So the Leibniz rule holds:
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Dn
G(uv) =

n∑
k=0

(
n

k

)
Dk

G(u)Dn−k
G (v).

See [11,26] for some examples of context-free grammars.
Recently, two methods are developed in the combinatorial theory of context-free gram-

mars, i.e., grammatical labeling and the change of grammars. A grammatical labeling is 
an assignment of the underlying elements of a combinatorial structure with variables, 
which is consistent with the substitution rules of a grammar (see [7] for details). The 
change of grammars is a substitution method in which the original grammars are replaced 
with functions of other grammars. In particular, the following change of grammars can 
be used to study the γ-positivity and partial γ-positivity of enumerative polynomials 
(see [8,26,27] for details):

{
u = xy,

v = x + y.

Let G be the following grammar

G = {x → xyz, y → xyz, z → xyz}. (13)

Dumont [10], Haglund-Visontai [16] and Chen-Hao-Yang [9] (in equivalent forms) showed 
that

Dn
G(x) = Cn(x, y, z).

Very recently, Chen-Fu [8] introduced a new change of grammars:
⎧⎪⎨
⎪⎩

u = x + y + z,

v = xy + yz + zx,

w = xyz.

(14)

Combining (13) and (14), one can easily verify that DG(u) = 3w, DG(v) = 2uw, 
DG(w) = vw. So we get a new grammar

H = {u → 3w, v → 2uw, w → vw}. (15)

For any n � 1, Chen-Fu [8] discovered that

Cn(x, y, z) = Dn
G(x) = Dn−1

H (w) =
∑

i+2j+3k=2n+1

γn,i,j,ku
ivjwk, (16)

where the coefficient γn,i,j,k is defined in (5). We can now present the main result of this 
section.
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Theorem 21. For n � 1, let

Nn(x, y, z) =
∑

σ∈Qn

xlap (σ)yeud(σ)zrpd(σ).

Then we have

Nn(x, y, z) =
∑

i+2j+3k=2n+1

3iγn,i,j,k(x + y + z)j(xyz)k, (17)

where the coefficient γn,i,j,k is the same as in (16), i.e., γn,i,j,k equals the number of 0-
1-2-3 increasing plane trees on [n] with k leaves, j vertices with degree one and i degree 
two vertices.

Throughout this section, we always set w1 = x +y+ z, w2 = xy+yz+ zx, w3 = xyz. 
Below are the polynomials Nn(x, y, z) for n � 6:

N1(x, y, z) = w3, N2(x, y, z) = w1w3, N3(x, y, z) = w2
1w3 + 6w2

3,

N4(x, y, z) = w3
1w3 + 24w1w

2
3 + 6w3

3,

N5(x, y, z) = w4
1w3 + 66w2

1w
2
3 + 42w1w

3
3 + 144w3

3,

N6(x, y, z) = w5
1w3 + 156w3

1w
2
3 + 192w2

1w
3
3 + 1224w1w

3
3 + 540w4

3.

Example 22. For the elements in Q2, we have

lap (1122) = lap (011220) = 2, eud(1122) = eud(011220) = 1,

rpd(1122) = rpd(011220) = 1, lap (1221) = lap (012210) = 1,

eud(1221) = eud(012210) = 2, rpd(1221) = rpd(012210) = 1,

lap (2211) = lap (022110) = 1, eud(2211) = eud(022110) = 1,

rpd(2211) = rpd(022110) = 2.

Thus N2(x, y, z) = xyz(x + y + z). See Fig. 4 for an illustration, where the weights are 
explained in (20).

5.2. Proof of Theorem 21

As discussed in Section 3, we shall use simplified ternary increasing trees. See Fig. 4
for an illustration, where the left figure represents the three different figures in the right. 
The weights E1(σ), E2(Cn) of σ ∈ Qn and Cn ∈ CQn are respectively defined as follows:

E1(σ) = xlap (σ)yeud(σ)zrpd(σ),

E2(Cn) = xn−#{ai|(ai,1) or (ai,2)∈Cn}yn−#{ai|(ai,1) or (ai,3)∈Cn}zn−#{ai|(ai,2) or (ai,3)∈Cn}.

(18)
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[p1]

[p3]
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1

2 or 

1

2 or 

1

2

Fig. 4. N2(x, y, z) = (x + y + z)xyz = p1p3.
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2
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1
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1
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[p3] [p3]
+ 

1

3 2

[p2]

[p3] [p3]
+ 

1

2 3

[p2]

[p3] [p3]
+ 

1

3 2

[p2]

[p3] [p3]

Fig. 5. N3(x, y, z) = (x + y + z)2xyz + 6(xyz)2 = p2
1p3 + 6p2

3.

Assume that Cn is the corresponding SP-code of σ. It follows from Table 1 that E1(σ) =
E2(Cn). The SP-code (0, 0) corresponds to the Stirling permutation 11. Clearly, E1(11) =
E2((0, 0)) = xyz = w3. When n = 2, the weights of elements in Q2 and CQn are 
respectively given as follows:

2211 ↔ (0, 0)(1, 1)︸ ︷︷ ︸
xyz2=w3z

, 1221 ↔ (0, 0)(1, 2)︸ ︷︷ ︸
xy2z=w3y

, 1122 ↔ (0, 0)(1, 3)︸ ︷︷ ︸
x2yz=w3x

,

and the sum of weights is given by w3(x + y + z) = w3w1.
Given Cn = (0, 0)(a1, b1)(a2, b2) · · · (an−1, bn−1) ∈ CQn. Consider the elements in 

CQn+1 generated from Cn by appending the 2-tuples (an, bn), where 1 � an � n and 
1 � bn � 3. Let T be the corresponding ternary increasing tree of Cn. We can add n + 1
to T as a child of a vertex, which is not of degree three. Let T ′ be the resulting ternary 
increasing tree. We first give a labeling of T as follows. Label a leaf of T by p3, a degree 
one vertex by p1, a degree two vertex by p2 and a degree three vertex by 1.

The 2-tuples (an, bn) can be divided into three classes:

• if an �= ai for all 1 � i � n −1, then we must add n +1 to a leaf of T . This operation 
corresponds to the change of weights

E2(Cn) → E2(Cn+1) = E2(Cn)(x + y + z), (19)
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which yields the substitution p3 → p1p3, see Fig. 4 and the first case in Fig. 5 for 
illustrations. Thus the contribution of any leaf to the weight is xyz and that of a 
degree one vertex is x +y+z (which represents that this vertex may have a left child, 
a middle child or a right child). When we compute the corresponding enumerative 
polynomials of Stirling permutations, it follows from (19) that we need to set

p1 = x + y + z, p3 = xyz; (20)

• if there is exactly one 2-tuple (ai, bi) in Cn such that an = ai, then we must add 
n + 1 to T as a child of the node ai. Note that the node ai already has the child 
i + 1, and n + 1 becomes the second child of ai. There are six cases to add n + 1. 
As illustrations, the last six cases in Fig. 5 are the total possibilities when we add 
3 to the simplified ternary increasing trees in Fig. 4 as the second child of the node 
1. This operation corresponds to the substitution p1 → 6p2p3. From (18), we see 
that each degree two vertex makes no contribution to the weight. Thus we need to 
set p2 = 1 when we compute the corresponding enumerative polynomial of the joint 
distribution of (lap , eud, rpd);

• if there are exactly two 2-tuples (ai, bi) and (aj , bj) in Cn such that an = ai = aj and 
i < j, then we must add n + 1 to T as the third child of ai, and n + 1 becomes a leaf 
with label p3. This operation corresponds to the substitution p2 → p3. From (18), 
we see that each degree three vertex makes no contribution to the weight, and so we 
label each degree three vertex by 1.

The aforementioned three cases exhaust all the possibilities to construct SP-codes of 
length n + 1 from a SP-code of length n by appending 2-tuples (an, bn). In conclusion, 
each case corresponds to an application of the substitution rules defined by the following 
grammar:

I = {p3 → p1p3, p1 → 6p2p3, p2 → p3}. (21)

We can now conclude the following lemma.

Lemma 23. Let I be the context-free grammar given by (21). For any n � 1, we have

Dn−1
I (p3) |p1=x+y+z,p2=1,p3=xyz= Nn(x, y, z).

In particular, DI(p3) = p1p3, D2
I (p3) = p2

1p3+6p2p
2
3 and D3

I (p3) = p3
1p3+24p1p2p

2
3+6p3

3.

Proof of Theorem 21. For the grammar H defined by (15), set w = p3, v = p1 and 
u = 3p2, we get DH(p3) = p1p3, DH(p1) = 6p2p3, DH(p2) = p3, which yields the 
grammar I. It follows from (16) that

Dn−1
I (p3) = Dn−1

H (w) |w=p3,v=p1,u=3p2=
∑

γn,i,j,k3ipi2p
j
1p

k
3 .
i+2j+3k=2n+1
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By (20) and Lemma 23, we obtain

Nn(x, y, z) =
∑

i+2j+3k=2n+1

3iγn,i,j,k(x + y + z)j(xyz)k.

This completes the proof of Theorem 21. �
6. The e-positivity of the multivariate k-th order Eulerian polynomials

6.1. Preliminary

A bivariate version of the Eulerian polynomial over the symmetric group is given as 
follows:

An(x, y) =
∑

π∈Sn

xasc (π)ydes (π).

Clearly, An(x, 1) = An(1, x) = An(x). Carlitz and Scoville [5] showed that

An+1(x, y) = xy

(
∂

∂x
+ ∂

∂y

)
An(x, y) with A1(x, y) = xy.

Foata and Schützenberger [14] found that An(x, y) has the gamma-expansion

An(x, y) =
�(n+1)/2�∑

k=1

γ(n, k)(xy)k(x + y)n+1−2k,

where γ(n, k) counts permutations in Sn with k descents, but with no double descents.
In this section, we always let k be a given positive integer. A k-Stirling permutation of 

order n is a multiset permutation of {1k, 2k, . . . , nk} with the property that all elements 
between two occurrences of i are at least i, where i ∈ [n], see [21,22,33] for the recent 
study on k-Stirling permutations and their variants. Let Qn(k) be the set of k-Stirling 
permutations of order n. It is clear that Qn(1) = Sn, Qn(2) = Qn.

Let σ ∈ Qn(k). The ascents, descents and plateaux of σ are defined as before, where 
we always set σ0 = σkn+1 = 0. More precisely, an index i is called an ascent (resp. 
descent, plateau) of σ if σi < σi+1 (resp. σi > σi+1, σi = σi+1). Clearly,

asc (σ) + des (σ) + plat (σ) = kn + 1.

As a natural refinement of ascents, descents and plateaux, Janson-Kuba-Panholzer [19]
introduced the following definition, and related the distribution of j-ascents, j-descents 
and j-plateaux in k-Stirling permutations with certain parameters in (k+1)-ary increas-
ing trees.
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Definition 24 ([19]). An index i is called a j-plateau (resp. j-descent, j-ascent) if i is a 
plateau (resp. descent, ascent) and there are exactly j−1 indices � < i such that a� = ai.

Let platj(σ) be the number of j-plateaux of σ. For σ ∈ Qn(k), it is clear that 
platj(σ) � k − 1.

Example 25. Consider the 4-Stirling permutation σ = 111223333221. The set of 1-
plateaux is given by {1, 4, 6}, the set of 2-plateaux is given by {2, 7}, and the set of 
3-plateaux is given by {8, 10}. Thus plat1(σ) = 3 and plat2(σ) = plat3(σ) = 2.

6.2. Main results

The multivariate k-th order Eulerian polynomials Cn(x1, . . . , xk+1) are defined by

Cn(x1, x2, . . . , xk+1) =
∑

σ∈Qn(k)

x
plat1(σ)
1 x

plat2(σ)
2 · · ·xplatk−1(σ)

k−1 x
des(σ)
k x

asc(σ)
k+1 .

Some known enumerative polynomials are the special cases of this new polynomial. In 
particular, when x1 = z, x2 = · · · = xk−1 = 0, xk = y and xk+1 = x, the polynomial 
Cn(x1, x2, . . . , xk+1) reduces to Cn(x, y, z); when x1 = x2 = · · · = xk−1 = 0, xk = 1
and xk+1 = x, the polynomial Cn(x1, x2, . . . , xk+1) reduces to the Eulerian polynomial 
An(x).

In the rest of this section, we always set Xk+1 = {x1, x2, . . . , xk+1}, and let ei be the 
i-th elementary symmetric function associated with Xk+1. In particular,

e0 = 1, e1 = x1 + x2 + · · · + xk+1, ek =
k+1∑
i=1

ek+1

xi
, ek+1 = x1x2 · · ·xk+1.

The following lemma is fundamental.

Lemma 26. Let G1 = {x1 → ek+1, x2 → ek+1, . . . , xk+1 → ek+1} be a grammar, where 
ek+1 = x1x2 · · ·xk+1. For n � 1, one has Dn

G1
(x1) = Cn(x1, x2, . . . , xk+1).

Proof. We start to show that the grammar G1 can be used to generate k-Stirling per-
mutations. We first introduce a grammatical labeling of σ ∈ Qn(k) as follows:

(L1) If i is an ascent, then put a superscript label xk+1 right after σi;
(L2) If i is a descent, then put a superscript label xk right after σi;
(L3) If i is a j-plateau, then put a superscript label xj right after σi.

The weight of σ is defined as the product of the labels, that is

w(σ) = x
plat1(σ)
1 x

plat2(σ)
2 · · ·xplatk−1(σ)

k−1 x
des(σ)
k x

asc(σ)
k+1 .
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Recall that we always set σ0 = σkn+1 = 0. Thus the index 0 is always an ascent and 
the index kn is always a descent. Thus Q1(k) = {xk+11x11x21x3 · · · 1xk−11xk}. There are 
k + 1 elements in Q2(k) and they can be labeled as follows, respectively:

xk+11x11x2 · · · 1xk−11xk+12x12x2 · · · 2xk−12xk ,
xk+11x11x2 · · · 1xk−21xk+12x12x2 · · · 2xk−12xk1xk , · · ·

xk+12x12x2 · · · 2xk−12xk1x11x2 · · · 1xk−11xk .

Note that DG1(x1) = ek+1 and D2
G1

(x1) = DG1(ek+1) = ekek+1. Then the weight of the 
element in Q1(k) is given by DG1(x1), and the sum of weights of the elements in Q2(k)
is given by D2

G1
(x). Hence the result holds for n = 1, 2. We proceed by induction on n. 

Suppose we get all labeled elements in Qn−1(k), where n � 3. Let σ′ be obtained from 
σ ∈ Qn−1(k) by inserting the string nn · · ·n with length k. The changes of the labeling 
can be illustrated as follows:

· · ·σxj

i σi+1 · · · �→ · · ·σxk+1
i nx1nx2 · · ·nxkσi+1 · · · for any 1 � j � k − 1;

σxk �→ σxk+1nx1nx2 · · ·nxk ; xk+1σ �→xk+1 nx1nx2 · · ·nxkσ.

In the second case, we put the string nn · · ·n at the end of σ. In the third case, we put 
the string nn · · ·n at the front of σ. In each case, the insertion of the string nn · · ·n
corresponds to one substitution rule in G1. Thus the action of DG1 on the set of weights 
of all elements in Qn−1(k) gives the set of weights of all elements in Qn(k). In conclusion, 
we get the grammatical description of Cn(x1, x2, . . . , xk+1). �

It should be noted that in [19] no explicit connection to the k-th order Eulerian 
polynomials has been established. By combining an urn model for the exterior leaves of 
(k + 1)-ary increasing trees and a bijection between (k + 1)-ary increasing trees and k-
Stirling permutations, Janson-Kuba-Panholzer [19, Theorem 2, Theorem 8] found that 
the variables in Cn(x1, x2, . . . , xk+1) are exchangeable. We can now present the main 
result of this section.

Theorem 27. Let k be a given positive integer. Then we have

Cn(x1, x2, . . . , xk+1) =
∑

γ(n; i1, i2, . . . , in)eink−n+2e
in−1
k−n+3 · · · e

i2
k ei1k+1, (22)

where the summation is over all sequences (i1, i2, . . . , in) of nonnegative integers such 
that i1 + i2 + · · · + in = n, 1 � i1 � n − 1, in = 0 or in = 1. When in = 1, one has 
i1 = n − 1. The coefficients γ(n; i1, i2, . . . , in) equal the numbers of 0-1-2-· · · -k-(k+1) 
increasing plane trees on [n] with ij degree j − 1 vertices for all 1 � j � n.

Proof. Let G1 be the grammar given in Lemma 26. Consider a change of G1. Note that 
DG1(x1) = ek+1, DG1(ei) = (k − i + 2)ei−1ek+1 for 1 � i � k + 1. Thus we get a new 
grammar
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G2 = {x1 → ek+1, ei → (k − i + 2)ei−1ek+1 for all 1 � i � k + 1}. (23)

Note that DG2(x1) = ek+1, D2
G2

(x1) = ekek+1, D3
G2

(x1) = e2
kek+1 + 2ek−1e

2
k+1,

D4
G2

(x1) = e3
kek+1 + 8ek−1eke

2
k+1 + 6ek−2e

3
k+1,

D5
G2

(x1) = e4
kek+1 + 22e2

kek−1e
2
k+1 + 16e2

k−1e
3
k+1 + 42ek−2eke

3
k+1 + 24ek−3e

4
k+1.

By induction, we can assume that

Dn
G2

(x1) =
∑

γ(n; i1, i2, . . . , in)eink−n+2e
in−1
k−n+3 · · · e

i2
k ei1k+1. (24)

We obtain

Dn+1
G2

(x1) = DG2

(∑
γ(n; i1, i2, . . . , in)eink−n+2e

in−1
k−n+3 · · · e

i2
k ei1k+1

)
=

∑
ninγ(n; i1, i2, . . . , in)ek−n+1e

in−1
k−n+2e

in−1
k−n+3 · · · e

i2
k ei1+1

k+1 +∑
(n− 1)in−1γ(n; i1, i2, . . . , in)ein+1

k−n+2e
in−1−1
k−n+3 · · · ei2k ei1+1

k+1 + · · ·+∑
2i2γ(n; i1, i2, . . . , in)eink−n+2e

in−1
k−n+3 · · · e

i3+1
k−1 e

i2−1
k ei1+1

k+1 +∑
i1γ(n; i1, i2, . . . , in)eink−n+2e

in−1
k−n+3 · · · e

i2+1
k ei1k+1,

which yields that the expansion (24) holds for n +1. Combining (24) and Lemma 26, we 
get (22). By induction, it is easy to verify i1 + i2 + · · · + in = n, 1 � i1 � n − 1, in = 1
or in = 0. In particular, when in = 1, one has i1 = n − 1.

Using (23), the combinatorial interpretation of γ(n; i1, i2, . . . , in) can be proved along 
the same lines as the proof of [8, Theorem 4.1]. However, we give a direct proof of it 
for our purpose. Let T be a 0-1-2-· · · -k-(k+1) increasing plane tree on [n]. We first give 
a labeling of T as follows. Label a degree i vertex by ek−i+1 for all 0 � i � k + 1. 
In particular, label a leaf by ek+1 and label a degree k + 1 vertex by 1. Let T ′ be a 
0-1-2-· · · -k-(k+1) increasing plane tree on [n +1] by adding n +1 to T as a leaf. We can 
add n +1 to T only as a child of a vertex v that is not of degree k+1. For 1 � i � k+1, 
if the vertex v is a degree k − i + 1 vertex with the label ei, there are k − i + 2 cases to 
attach n +1 (from left to right, say). In either case, in T ′, the vertex v becomes a degree 
k− i + 2 vertex with the label ei−1 and n + 1 becomes a leaf with the label ek+1. Hence 
the insertion of n +1 corresponds to the substitution rule ei → (k−i +2)ei−1ek+1. Hence 
Dn

G2
(x1) equals the sum of the weights of 0-1-2-· · · -(k+1) increasing plane trees on [n], 

and so we get the combinatorial interpretation of γ(n; i1, i2, . . . , in). �
By using Dn+1

G2
(x1) = DG2

(
Dn

G2
(x1)

)
, it is routine to verify that

γ(n + 1; 1, n, 0 . . . , 0) = γ(n; 1, n− 1, 0, . . . , 0) = 1,

γ(n + 1;n, 0, . . . , 0, 1) = nγ(n;n− 1, 0, . . . , 0, 1) = n!.
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Note that γ(3; 2, 0, 1) = 2, γ(4; 2, 1, 1, 0) = 8 and

γ(n+ 1; 2, n− 2, 1, 0, . . . , 0) = 2γ(n; 2, n− 3, 1, 0, . . . , 0) + 2(n− 1)γ(n; 1, n− 1, 0, . . . , 0).

By induction, it is easy to verify that

γ(n; 2, n− 3, 1, 0, . . . , 0) = 2n − 2n for n � 3. (25)

Let Cn(x) =
∑n

j=1 C(n, j)xj , where the coefficients C(n, j) are called the second-order 
Eulerian numbers. They satisfy the recursion

Cn+1,j = jCn,j + (2n + 2 − j)Cn,j−1,

with C1,1 = 1 and C1,j = 0 if j �= 1 (see [1]). In particular, Cn,2 = 2n+1 − 2(n + 1). 
Comparing this with (25), we see that γ(n; 2, n − 3, 1, 0, . . . , 0) = Cn−1,2 for n � 3. 
Following Janson [18], the number Cn,j equals the number of increasing plane trees on 
[n + 1] with j leaves. So we immediately get the following result.

Corollary 28. For any n � 2 and 1 � j � n − 1, one has

Cn−1,j =
∑

i2+i3+···+in=n−j

γ(n; j, i2, . . . , in−1, in).

7. Concluding remarks

In this paper, we introduce the SP-code of Stirling permutation, which is obtained 
from the well-known representation of Stirling permutations via ternary increasing trees. 
The SP-code can keep track of the parent node and the type of children (left, middle, 
right) of a ternary increasing tree. The concept of SP-code could be transferred to k-
Stirling permutations [9,23,32], Stirling permutations of a general multiset [12,19,21] as 
well as quasi-Stirling permutations [13,33]. We plan to work out such generalizations in 
a separate contribution.
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